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This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the crInference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi- level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal-and Statistical Physics, and the Structure

and Properties of Natter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of :he monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Tete

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.
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1 HEAT MOTION

One hears that seemingly stationary
matter is really composed of atoms in
violent motion. Somehow, the motion is
caused by heat. It is often called
"heat motion," but the name simply begs
the question: Is "heat" just another
word for motion? As the temperature is
reduced the heat motion becomes less
violent. Is heat different from tem-
perature? At absolute zero the atoms

are . . . motionless? The last question
is usually especially puzzling tc the
student, who may feel that "absolute
zero" has a forbidding sound. Some
have heard that absolute zero is unat-
tainable, which is forbidding enough.

How do we know that atoms have
heat motion, and how does the motion
affect what we can feel and measure?
What happens near absolute zero? The
answers are contained in the branches
of physics known as kinetic theory and
statistical mechanics. In this mono-
graph the subjects are introduced by
studying neat motion in a gas.

We begin with atoms, as Leucippus

and his student Democritus (460-370
B.C.), assumed them to be, indivisible
and unchanging. The atomic hypothesis,

as it was formed into a philosophical

system by Epicurus (341-270 B.C.), was
the inspiration for the poem De Rerum
Natura of Lucretius (died ca. 55 B.C.),

who viewed all of inanimate nature,
life, and society as increasingly com-
plex systems progressively developed
from the natural laws governing atoms.
This poem has been called a versified
textbook in atomic physics, and it pre-

sents a compelling unified view of na-

ture. But Aristotle (383-322 B.C.), who
had the greatest influence on the nat-
ural philosophy of later Greeks, found

the atomic basis of the universe and
our perceptions of it distasteful and

incompatible with his own conviction
of divine purpose. His criticism of
the atomists seemed sufficient reason
to the medieval philosophers for re-

1
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jecting their theories, and Lucretius'
poem was banned. By the time it was
made widely known again, by the Commen-
taries of Gassendi (1592-1655), two
thousand years had passed since Demo-
critus.

Publication of the Commentaries
revived the ancient discussions on the
nature of air, which had played an im-
portant role in the Greek atomists'
speculations on the physical influence
of unseen things. Gassendi himself
helped to set the stage for the modern
study of gases. His atoms move freely
in all directions, accounting for the
free diffusion of the gaseous state in
apparent Violation of gravity. The par-
ticles have mass, and particles of like
matter have like mass. Thus, the den-
sity of a gas at a particular pressure
depends only on the average number in
a unit volume. Being free to move in
any direction, they collide with all
walls and partitions. If a partition
is moved in, so as to decrease the
space available to their movements,
the rate of atomic collisions with the
partition increases, and therefore more
force will be necessary to oppose their
impact. With this qualitative model,
Gassendi prepared the atomic hypothe-
sis for the quantitative researches of
Boyle (1627-1691), and Hooke (1635-
1703), on the elasticity of gases.
With this cursory view of its histori-
cal origins, we will begin our study
at this point, in a simplified treat-
ment of the gas laws.

Boyle (or Hooke), discovered, in
1660, that the pressure of a gas in a
container varies inversely with its
volume, so that the product PV for any
given body of gas is a constant as the
volume is changed. (It has since been
named.Boyle's law.) Daniel Bernoulli
gave a quantitative explanation, in
terms of atoms, in 1738. A simple der-
ivation is as follows: We imagine a
cubical container filled with a large
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Pig. 1.1 Diagram of an oversimplified model
of molecular motions in a cubical volume.

number of identical atoms. At first we
imagine that all the particles move
with the same speed v back and forth
in each direction, as illustrated in
Fig. 1.1. Each atom travels back and
forth between faces A and B, its mo-
mentum changing by 2mv at each colli-
sion (its mass is m); the time between
two successive impacts on each face
being 2L/v. Hence, the impulse, or
change of momentum experienced by all
N particles at each wall is

change in momentum 2mv mv a

N N
elapsed time 2L/v L

(1.1)

in unit time. This rate of change of
momentum is accomplished by the appli-
cation of forces at each collision,
and clearly it is the walls that sup-
ply the forces: According to the New-
tonian principle of equal action and
reaction, the forces on the particles
and on the wall are equal in magnitude,
and opposite in direction. Thus, as
the particles are turned back into the
container at each collision, the wall
is pushed outward. The total reaction
on the wall is the total effect of a

st rain of impacts. Under most con-
difA.Als, all that can be detected is a
time-averaged force. The average force
is equal to the average rate of change
of momentum "delivered" to the atoms
by the wall: It is just the value in
Eq. (1.1) above. Because the force is
imparted by many impacts it also seems
to be distributed uniformly overthe
surfaces of faces A and B. A unit area
of each face experiences an average
pressure P equal to the force per unit
area of the face:

Nmvs
P

Nmvs

Ls V

where V Ls is the volume of the con-
tainer.

By using an extremely artificial
model we have obtained the property
PV - constant, for faces A and B. But
what happens at the other faces? Our
next step is to improve the theory by
using a more realistic model. Instead
of assuming that all atoms move back
and forth between .aces A and B, we
should not expect that these two faces
will be singled out, but that all six
faces are equivalent, all experiencing
the same average pressure. One way of
establishing the equivalence would be
by assuming that one third of all the
atoms move back and forth between A
and B, one third between top and bot-
tom, and the one third between the re-
maining.pair. In this way, all faces
experience the average pressure

(1.2)

P
1 Nmvs
3 V

Again, we can see that the model
is unrealistic and can be improved.
We4should expect that atoms will move
not only along the three directions
parallel to the sides, but will also
take all the intermediate directions,
with arbitrary velocity components vx,
vy, vs, in a Cartesian coordinate sys-
tem. The axes of the coordinate system
can be oriented in any manner relative

to the sides of the container. The to-
tal behavior of all the particles will
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still be uniform in all directions:
There is no preference for one direc-
tion over any other. We can imagine an
"average atom" which traces out a com-
plicated path which samples all direc-
tions in succession, so that its aver-
age velocity components have equal
magnitudes:

Ivx1 Ivy IVil. (1.4)

Since the total velocity is the vector
sum of the three Cartesian components,

VS In Vx + V I + via

3 vx2 .

The pressure on each face, due to the
averaging over all directions of the
atomic velocities, is the same as in
Eq. (1.3). Thus, we see that the pres-
sure is uniform on all faces, slaw if

the atoms move in random directions,
provided that all directions are
equivalent.

Equation (1.3) can be rewritten
in terms of the kinetic energy E of an

individual particle. Since E imva,

2 2
kinPV

3
NE 3 U (1.5)

where Ulan is defined as the total ki-

netic energy of all the particles.
Therefore, the product PV is constant
for a constant total kinetic energy of

the gas enclosed, as long as all par-
ticles have the same speed.

Clearly, this last assumption is
unreasonable, We cannot accept the hy-
pothesis that a gas of randomly moving

atoms has only one characteristic speed.
More likely, there are collisions be-
tween atoms which cause some to slow
up and a few to gain most of the energy
of the two; that is, there is probably
some randomness in speeds as well as
in directions. However, we might ex-
pect that there is some Ammumlemd

Alto symbol < > is used quite generally in phys-

ics to denote an average quantity. Somewhat
less often, a bar over the quantity is alterna-
tively used. FOr example, the average speed can

be written <Wio or

of the atoms that is unchanging. If '

the average molecule has an average
speed then it has an average energy

(E) is(v2), and Boyle's law is still

satisfied:

N(E)
2

PV i
(1.6)

where the total kinetic energy limp
N(E).

A simple extension of these argu-
ments leads to another important re-
sult, known as Dalton's law. Suppose
that the quantity of gas is composed
of two types of atoms. The pressure at
the walls is a result of the impacts
of both varieties, which we take to
have numbers Ni, NE, and average ener-
gies (E1), (E3). Then, the product PV

is, after Eq. (1.6), the result of
both types of atoms bombarding the
walls,

PV
2
Ni(Ei) + Ns(Es)

which we can write in terms of two
partial pressures Ps and Ps, where Pi

and P2 g" (2/3)N (El), etc..If more va-
rieties are presents the total pres-
sure P is the sum of all partial pres-
sures, where each partial pressure is

equal to the pressure that each type
would have if it alone occupied the
container. Thus, for v different atomic
species, the total pressure is

P 2: pi, where pi N (El).
1=1

Although we have derived the
pressure equation for the spetlial case
of a cubical container, it can be eas-
ily extended to arbitrary shapes. For
we can imagine any shape composed of a

series of identical cubes, each filled
with the same number of identical atoms
having the same average speed (v).
Every pair of walls of adjacent cubes
would be subject to the same average
pressure. Therefore, the internal walls
are really not necessary, since they

provide no net force, and there is no
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discernible difference between two
atoms rebounding from opposite sides

of a wall and their passing through the

wall without collision, with each one
moving away from the wall into the
other atom's container. Therefore, re-
moving all inside walls will not change

the pressure, since the total number of

particles per volume N/V of the large

composite volume is the same as for
each of the component subvolumes.

Soon after the discovery of
Boyle's law it became evident that it

was only conditionally obeyed. Amontons

observed in 1702 that the empirical
constant increased if the quantity of

gas was :armed. But the manner of its

change could not be specified quanti-

tatively without some manner of meas-

uring how much warmer. Although crude

thermometers had been invented by Gali-

leo and othera, no satisfactory instru-

ment existed witil Fahrenheit (1686-

1736) developed a mercury thermometer,

and established a temperature scale

determined by the boiling points of

liquids. With its aid, Charles (1746-

1823) showed in 1787 that the constant

of Boyle's law varies linearly with the

temperature. That is, according to the

temperature t on the temperature scale

defined by a mercury thermometer, the

variations of pressure and volume of a

fixed quantity of gas can be described

by the equation

PV cc (1 + at),

MERCURY SCALE
SHIFTED SCALE

0

NIO°1)44'.°
9 S

(1.8)

0

t

Fig. 1.2 Illustrating the relation between

the temperature scales according to the mer-

cury thermometer and the expansion of gases.

where C and a are constants. Charles''

law can be used to establish a more
convenient temperature scale, defined

by the gas itself. If wo define a now

temperature T in terms of the mercury
thermometer's scale by the relation

T + at,

then Charles' law becomes

PV = CT. (1.9)

where C is a constant. This simple

transformation of the temperature
amounts to a shift of the zero of tem-

perature, illustrated in Fig. 1.2. As

it was elaborated by Gay-Lussac (1778-

1850), and others, the modern form of
the gas law is given in terms of the

number of atoms N and a universal con-
stant k, the Boltzmann constant:

PV NkT. (1.10)

The Boltzmann constant k 1.380

X 101Ierg/atom °K is related to the
"gas constant" R by Avogadro's number

NA 6.025 x 1023 atoms/mole and the
number of "moles" nn:

Nk = null;

R = R.317 x 107 erg/mole °K (1.11)

k and R are experimentally determined,

and have been found to be universal

constants, independent of the chemical

species or mass of the gas. As long as

the gas is not too dense or cold, the

gas law provides an accurate descrip-

tion of molecular gases as well. It

can be seen that an experimental law

such as Eq. (1.10) might be used as

tan basis for a universal temperature
scale, since it does not depend on par-
ticular details of the experimental ap-
paratus. It is actually used for the

establishment of an absolute tempera-

ture scale. The experimental and theo-

retical details of its establishment,

although of fundamg!iltal importance in

thermodynamics and statistical mechan-

ics, is tangential to the main purpose
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of this monograph. Interested students
may read an extensive and lucid de-
scription in Heat and Thermodynamics,
by M. W. Zemansky (see bibliography).

The gas law, established by over
two centuries of experiments, put into
its modern form, Eq. (1.10) leads us to
a microscopic interpretation of temper-
ature. In Eq. (1.6), we obtained an
atomic basis for Boyle's law, in terns
of the average kinetic energy (e) of
the particles. It now seems, that if

the product PV is found to vary with
the absolute temperature, it must be
that the average energy of the atoms
is changed accordingly: comparing 24.
(1.6) and Eq. (1.10), we have

3
(E)

2
kT: (1.12)

Thus, with a combination of experimen-
tal fact and theoretical argument based

on the atomic hypothesis, we have come
to a beautifully simple and profound
insight into the heat motion of the
atoms of a gas. However, at this stage
in our development, we cannot say that
Bei'. (1.12) is "proved," since it is not
a purely mathematical theory. Its ulti-
mate test can only be done by actually
measuring the average energy of the at-
oms, and finding that they act; the
equation. That test will in fact be the
climax of our story. But before that,
we will improve our theoretical model
of the heat motions, to develop a dis-
tribution law for the velocities. This
will lead us away from our direct con-
cern for a while, to a description of
statistical distributions in many other
systems, and a short introduction to
mathematical probability theory. We
will return, in Chapter 4, to the mi-
croscopic model of a gas, and apply
statistical methods to its analysis.



2 CHANCE, ERROR AND STATISTICS

There 's a commln thread in the mathe-
matic t lied statistics, which we use
to stuai such widely diverse fields as
gambling, quantitative measurements,
biological variation, and the physical
nature of matter. Although we want pri-
marily to understand its part in phys-
ics at this moment, the roles that sta-
tistics plays in the other areas are
also fascinating. Moreover, by study-
ing its appearance in many guise' ire

can 1,Jpe to understand better how it
works in one, aid as we see it in each .

additional situation it shows us other
aspects, becomes more fully fleshed,
and familiar. In this chapter, we only
talk about the statistical laws but Co
not use mathematics; in the next, the
mathematical forms are-derived and
analyzed.

2.1 GAMES OF CHANCE

Successful gamblers know at least
the simplest facts about statistics in
their bones. They know that the laws of
large numbers include not only the most
elementary, that averages of groups of
many identical things will agree, more
or less, but also that deviations are
bound to occur. Improbable runs of luck
are possible; they are what makes the
game interesting. Furthermore, improb-
able runs are bound to happen, if one
plays long enough, and the frequencies
of their appearance can be estimated.
The expectation of probable and improb-
able runs to be found in the game can
be determined from the distribution
function of its results. The distribu-
tion function is simply a complete rec-
ord of a very large number of sample
games, so that all of the improbable
events have had a chance to appear,
and all of the more likely ones to ap-
pear many times, to establish a well-
defined average behavior. If we have
studied one group of many games, we

know how future skoups tend to work
out; the diairibution function is a
prope:cy of the game, not the particu-
lar set of contests on which we base
the statistical analysis. If the sam-
ple set contains few entries, it may
be unrepresentative, containing an un-
usual proportion of unlikely results;
To be characteristic of the game it-
self, the sample set should contain an
infinite number of contests. Whether
one tries to achieve very large sets
in practice or not, the concept of
probability involves the idealization
that the infinite set has been played,
or could be played; and the a priori
probability of a particular result is
the fraction of times that this result
would appear. We say that the probabil-
ity of a well-balanced-and well-tossed
coin coming up heads is 1/2; 1112 a

sense, that probability implies a defi-
nition for "well-balanced and well-
tossed." We don't know the"- it is so
until an experiment is done, but until
it is, we accept the a priori probabil-
ities themselves as representing the
infinite set of trials.

It is amusing to read of the his-
toric experiments designed to check the
calculations based on a priori proba-
bilities. The naturalist Buffon, as-
sisted by a child tossing a coin in the
air, played 2,048 partis of the Peters-
burg game, in which a coin is thrown
successively until a parti is brought
to an end by the appearance of heads.
A Swiss astronomer studied the behavior
of dice in several long sequences,

. which he analyzed for all of their dis-
tinguishable combinations; he wrote
that altogether, in the course of his
life, he had made 280,000 casts of in-
dividual dice. After he had completed
the major part of his investigations,
he found that the results were very
different from the predictions of the-
ory; some combinations were signifi-
cantly more frequent than the a priori
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probabilities implied. So the only re-
sult of his labors was that he learned
that the dice were irregular, and that
the a priori probabilities he had as-
sumed were incorrect.

As a mathematical exercise, the
dice experiment was a failure, but as

an investigation into the properties

of his dice, it was a reasonable way
to behave. It was also analogous to the
way many physical experiments have pro-

ceeded. The physical systems we study
are composed of many basically idt.nti-

cal objects, such as molecules, as
alike as casts of the same die. Each
molecule can be in one of a variety of
states, as the die can show one of
several faces uppermost. A collection
of many molecules is like a set of many

casts, and the sets of results can be

related to the properties of an indi-
vidual molecule or to an individual
cast by the mathematics of statistical
theory. Distribution functions of physL
ical Properties give us clues to the

structure of matter, just as distribi-
tion functions of gambling results show

us some aspects of the game.
There are still stronger parallels

between physical systems and games of
chance, and those parallels are sug-
gested by the similarities in the dis-

tribution functions. We can begin to
develop an insight for the parallels by

exploring some qualitative features
that games of chance have in common.
Coin-tossing and dice are not the only
games of chance, and other games have

their distribution functions as well.

Allowing for changes in scale, and
sometimes a regular distortion, they

all show some strong resemblances. It

is not very surprising that they should

resemble each other in a crude way;
after all, every game has a normal, or

most expected result, and the rest of

the results are less and less likely,

so that they each have a curve with

some sort of peak, with decreasing

heights for the results progressively
different from the norm. But many re-
semble each other in more detail than

that; these have the same mathematical

form, called the binomial distribution.

/

The binomial distribution is basic
to all games of chance. Their fundamen-

tal similarity is due to the nature of

pure chance, ln which every event is

alike,,and no event is influenced by
those that come before or after. Each

time the dice are thrown, the chance of

a particular result does not depend on

whether that number has been appearing
unusually often. Since each result is
independent, there is no way for a run
of luck to prolong itself, and the run
will continue or cease according to the

I
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of a well-balanced coin. If is equal to the

number of tosses in each sequence.
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results of each successive throw, hav-
ing the same chance as any other cast.
All games of chance are this way, and
if we allow for variations in their
designs, such as the number of possible
results of a single event, they have
similar distribution functions. The
basic distribution is the binomial;
under certain conditions, it takes on
forms which are easier to use for com-
putations. The two derived forms most
commonly used in physics are the Pois-
son and the normal (or Gaussian), dis-
tributions.

2.2 PRECISION MEASUREMENTS

How can it be that these mathe-
matical forms have a place in physics?
Science and gambling seem worlds apart;
one representing reason, and the other,
the complete lack of it. Is it only an
accident that their mathematicS show
some resemblances? Actually, it is no
accident, since there are many ways in
which chance plays an important role in
science, and when it does, its signa-
ture is found in the presence of one of
the characteristic distribution func-
tions.

When they do appear, it is often
in the most intentional and logical
operations. For example, one of the
most precise technical manipulations
one can do today is to measure a phys-

ical quantity. The measurement of the
length of a rod, if repeated several
times, will give a set of slightly dif-
ferent answers. Of course, more precise
instruments will give answers which
cluster together more closely: Measure-
ments taken with a micrometer will show
less scatter than s series obtained
with a ruler. Each set of measurements
will have an average, the "length" of
the rod, and each set will contain val-
ues which become less numerous as they

move further from the average. If the

measurements are done without system-
atic errors (such as squeezing the rod
too hard with the micrometer or always
reading the ruler at a slant), both
sets of measurements give the same

average value. That is, the ruler val-
ues may average to 0.69 inch, say, and
the micrometer values average to 0.6883
inch: They agree, if we allow for the
lower precision of the ruler. The ruler
values have a wider spread, and we may
find that several are greater than 0.71

inch, while there are no micrometer
values greater than 0.690 inch. The
spread, or dispersion, of "wrong" re-
sults varies according to the instru-
ment and to the way it-is used, but
allowing for the difference in preci-
sion, both sets of results tend to have
very similar shapes. They are usually
approximately Gaussian, at least over
their central regions, with only an
average value and a dispersion to dif-
ferentiate one set from another. And
now, there are no parameters left which
might refer to the nature of the rod or
the instrument with which the data were
obtained.

The Gaussian distribution is good
not only for measurements of the length
of a short rod by rulers and microme-
ters, but for any ...-..agths and dis-

tances, and for instruments of any pre-
cision. There is not even a parameter
to describe what sort of physical quan-
tity is being measured; the statistics
of "wrong" answers is quite independent
of the nature of length. It is just as
true of mass, and the preceding de-
scription could be immediately extended
to describe a measurement of mass sim-
ply by changing a few words: "mass" for
"length," and perhaps "spring scale"
for "ruler" and "analytical balance"
for "micrometer." And it is true of all
physical measurements, no matter how
sophisticated the experiment. The pre-
cision of some physical measurements
is now greater than 1 part in 10 bil-
lion: it is just as true for them. Of
course, there are limitations on such
a general rule. There must be many
possible "wrong" answers from the re-
sult of a single measurement for the
distribution to be Gaussian. Otherwise,
the distribution is composed of dis-
crete possibilities - the binomial dis-
tribution is more appropriate in that
case, as it is for coin-tossing and
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dice. The errors must also be truly
random, with no especially large or un-
usually probable errors of a particular
kind or magnitude. "Random" is almost
a definition of the pattern of errors
that follows the simple statistical
distributions. We can interpret the
mathematical similarity between the
statistics of physical measurements and
games of change in two ways: in one
sense, a crapshooter is making a series
of measurements to establish the aver-
age behavior of his dice; in another
sense, it is a gamble that random vari-
ations will cancel out when we make a
physical measurement. Actually, the
signature of one of these distributions-
is usually highly prized by the re-
search worker or statistician, because
it indicates that the data has probably
been collected without bias: even the
"bad" results were kept.

2.3 QUALITY CONTROL

But who is to tell us what is
''bad''? The variatic. baleng 1:e all as-

pects of the measurement; the instru-
ment, its use, and the measured quan-,
tity itself. They spring from causes
ranging from the most trivial, such as
careless work, to the most complex,
such as are due to the nature of the
thing measured. All of these variations
contribute to the total spread of the
measurements, ani there is no way of
examining a single set to determine
what variations are due to a poor in-
strument or are characteristic of the
thing measured. For the single set of
many experiments, all of the random
scatter is real, and there are no
"wrong" measurements. (Not all varia-
tions are random, however - sometimes
unusual events interfere with the
course of a measurement, and cause some
values to deviate from the norm by much
larger amounts than expected. When this
happens, the deviant result may be
tested against a standard distribution,
and it may be discarded if it fails to
meet quantitative criteria.) Sometimes
it is apparent that most of the scatter
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Fig. 2.2 Hyperfine structure separation of
the ground state of deuterium, measured by
atomic beam resonance by A. G. Prodell and
P. Kusch (Phys. Rev. 88, 184 (1952)). Histo-
gram showing the distribution of 350 meas-
urements of the frequency, together with a
Gaussian error curve.

of results is due to a poor instrument,
and that the measured quantity is much
more uniform than the data indicated.
But unless the measurements are re-
peated with a more precise instrument,
there is no way of reading coarse data
to tell which errors are instrumental.
However, if more coarse measurements
are made, their average becomes more
reliable, and in the limit of an infi-
nite number of measurements, it is un-
affected by the random errors of the
instrument and its operator.

If, instead of measuring the
length of a single rod, we measure the
lengths of many apparently identical
rods, the measurements show wider vari-
ations. The variations can be attribu-
ted to real variations in the lengths,
independent of the experimenter or his
micrometer. Variations can be perceived
even among supposedly identical rods
made by the same automatic machine.
Whatever errors contribute to the vari-
ations are errors in the way the ma-
chine repeats its manufacturing cycles.
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These variations, which are due to many
imperfections, produce irregular prod-
ucts whose properties are often found
to fall on Gaussian distribution
curves. No matter what property is con-
sidered, or how standardizeti the prod-
uct, examination usually discloses sim-
ilar distributions. They come from the
same fundamental behavior of random var-
iations as those of repeated measure-
ments, except that in these caues, one
cannot attribute the variations to hu-
man mistakes. They are also a feature
of automation, and the statistical anal-

ysis and limitation of the resulting
imperfections form the basis for the

fields of "quality control," "process
control," or "industrial statistics."

10 15

COEFFICIENT OF ADHESION

Fig. 2.3 85 rolls of tape classified by ad-
hesion values. After John D. Heide, Indus-
trial Process Control by Statistical Methods
(McGraw-Hill Book Company, Nev York, 1952).

1

10 20 30

HEIGHT OVER 1 METER (CENTIMETERS)

Fig. 2.4 Heights (excess over 1 m) of 767

six-year-old boys, in a group selected for
uniform arm length. After Paul Peach, An
Introduction to Industrial Statistics and
Quality Control (awards and Broughton Co.,
Weigh, 1945).

In many cases the manufacturing
process can be seen to be imperfect. A

shaft may have worn bearings, a cutting
tool may chatter against the work, or a
switch contact may be dirty. When such
defects are corrected the machine makes
products of greatqr uniformity. But
variations will still be present, due
to minor defects in the machine, and
these variations will still fit a dis-
tribution curve, although one of smal-
ler dispersion. The process of machine
improvement is a never-ending spiral
toward smaller variations and a narrow-
er range of-results, but they are still

describable by a distribution.
Somewhere along the line of de-

creasing errors one finds a limitation
in the nature of the materials of the
machine and the product. For example,
one of the technical properties of met-
als and alloys is their ability to
withstand repeated bending and flexing.
The bending produces a network of crys-
talline dislocations, microscopic
cracks, and eventually fracture. Dif-
ferent alloys have enormously different
resistances to this sort of fatigue,
and their resistances are obviously a
matter of great technical importance.
In many schools and laboratories there
are machines which test standard sam-
ples by bending them repeatedly until
they break. They work under controlled
ounditions, with fixed angle of bend,
radius of curvature, number of bends
per minute, and so forth. With every
significant variable kept uniform, ap-
parently identical samples have mark-
edly differing lifetimes: The lifetimes
fall on a distribution curve of consid-
erable width. There seems no way to
make the pieces break after an iden-
tical number of cycles: the scatter
is in the nature of the samples, in
the random processes of the atomic
motions and arrangements that lead to
the microscopic dislocations and
cracks. If there were a way to make
them all show fatigue and crack at the

same point, one would be able to save
considerable sums of money by replacing
parts just before they were able to
crack. Just such a supposition, that a
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good metallurgiut can predict when par-

ticular pieces aircraft wings), were

due to break, formed the central theme

of a popular novel and movie. It was
good entertainment, but terrible phys-
ics. And yet, it is almost reasonable
to expect that all of the scatter can

some day be eliminated. Years ago, var-

iations among samples were much
greater. Looking back, we know that
they were caused by gross variations in

alloy composition, heat treatments, and
machining. Modern metallurgical prac-
tice has placed all of these variables
under much stricter control, and the
distribution functions of the alloy
properties have responded by becoming'
much narrower. It is now difficult to

make them still narrower, since the

relatively easy controls have already
been applied. If very grey* improve-

ments are still to be maCi,,, it seems
unlikely that they will be accomplished
simply by improving our present manu-
facturing techniques, but will have to

depend on quite novel and sophisticated

procedures, which will control even the

pattern and density of crystalline im-

perfections in each sample. Until then,
it seems that the variations among sam-

ples can still be classed as accidental

errors in their fabrication, either

directly due to the people who design

and control the methods and machines,

or to imperfections in the machines

themselves. Gaussian and similar dis-

tributions of the properties of the
samples could then arise in essentially

the same way they do in a series of
physical measurements, out of the ran-

domness of errors and cancellations of

their effects.

2.4 BIOLOGICAL VARIATION

If the distributions in the prop-

erties of artifacts were only due to

human or mechanical errors, we should

expect to see very different patterns-

among natural objects. There are many

types of essentially identical things

that have natural, or nonhuman origins.

Some of the most familiar are living

4

forms of the same species. They are as

alike as peas in a pod. How about peas?

Mendel used them for his studies of in-

heritance. The regularities he discov-

ered are expressions of the multinomial
distribution, an extension of the bi-
nomial for the case in which more than

two results of a trial are possible.

The statistics of pea colors pointed

toward the mechanism of inheritance,
and we now understand how the random

encounters of pairs of chromosomes lead

to the regularities of the Mendelian

laws. Within a single genotype there

are remaining variations in other char-

acteristics: size, weight, firmness, or
germination time, and these variations

are usually Gaussian. As it is for

peas, the same distribution law occurs
throughout the biological world; no
form of life is exempt, not even our
own. There are tons of statistics on

human measurements, ranging from the

ordinary sort of height, weight, and

so forth (see Fig. 2.4), to micro-

scopic, physical, and chemical studies

requiring highly specialized instru-
ments. Whenever a large number of sam-

ples is obtained, the familiar mathe-
matical forms emerge. Normal distribu-

tions characterize nonphysical quali-

ties as well, such as I.Q. and test

scores. When a class is graded on a

curve, that curve is usually an approx-

imation to one of the simple distribu-

tion laws. In fact, the branch of math-

ematics called statistics has origins

closely associated with the analysis of

human populations. Among the early

studies were the proportion of a popu-
lation that could be expected to bear

arms, life insurance tables, and the

immunity to smallpox. Sometimes it is

easy to understand how a particular
phenomenon, which has its basis in ac-.

cident, leads to the statistics of

chance. For example, an analysis of the

number of deaths in given years by

kicks from a horse disclosed a Poisson

distribution. Yet, the same distribu-

tion describes the rate of telephone

calls arriving at a :antral switch-

board. And even the apparently inten-

tional and organised actions of society
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seem to follow the muse pattern: the

numbers or outbreaks of war per year
from 1820 to 1939 have been found to
follow a Poisson distribution remark-
ably well.

Observations of binomial, Poisson,
and Gaussian and related distributions
in biological populations is one thing,
but understanding why is another. It is
not at all obvious that the "Law of Er-
ror" should also describe the varia-
tions among biological properties. Its
interpretation caused a controversy
among scientists and mathematicians
that lasted over a century. The argu-
ments are worth describing here, be-
cause some of them help to illuminate
the mystery of the same law's appear-

ance in physics.
In 1835 the Belgian astronomer

Quetelet published "Essai de Physique
Sociale," with which he gave a substan-
tial basis to the new theory of statis-
tics. He was the first to present con-
vincing argulaunts for what has been

called the constancy of large numbers,
with particular application to men. The

success of Quetelet's statistics com-
bined with the contemporary rationalism

to convince him that he had demon-.
strated that society obeyed eternal
and natural laws. As:the measurements
of a physical quantity were scattered

aoout the true value because of error,
so the ideal biological models wore

thought to be imperfectly copied by
nature, which, in his view, always
strives for perfection. Quetelet's
ideas were comfortable for his society
and his time: It was an age of supreme
reason and natural perfection. But as

the philosophy of society relaxed to
one of greater liberalism, new inter-

pretations were made. In the debate,
which still echoes, the distinctions
between "error" and "variation" have
been blurred.

In physics we are on ground fur-
ther removed from ideas of perfection
and purpose, errors, and mistakes. The
familiar distribution laws seem to be

everywhere. The velocities of thr atoms

of a gas are found to be Gaussian in

any direction; so are the velocities of

the conduction electrons in a semicon-
ductor. The numbers of atoms of a ra-
dioactive bit of matter that decay in

each sacond follow a Poisson distribu-

tion law; so does the number of mole-
cules of hydrogen in each cubic centi-

meter of interplanetary space. Instead

of lengthening this list of examples
from physics, we will end the discus-

sion of the statistical laws here, to

examine their basis by mathematical

analysis.



3 AN INTRODUCTION TO THE
MATHEMATICS. OF PROBABILITY

Coin-tossing is one of the simplest
examples of systems of random events,
and yet it can lead us to an under-
standing of important and current
fields of physics. The theory is read-
ily adaptable to phenomena as diverse
as the magnetism of solids, the evap-
oration of liquids, and the structure
of alloys. These phenomena share a re-
liance on microscopic units which can
be idealized as having only two possi-
ble states of conditions of some sort:

ti, + 0 41, or heads-tails. By sim-
ple extensions of the mathematics, it
will be possible to analyze phenomena
springing from more than two states,
and these will include the molecules in
a gas that we set out to discuss in
Chapter 1.

3.1 THE BINOMIAL DISTRIBUTION:
A SYMMETRIC COIN

We assume that the probability of
coming up heads is equal,to the proba-
bility of tails:

P(H) p(T)

A result is certain to be either heads
or tails, so that for a perfectly bal-
anced coin,

p(H) + p(T) 1; p(H) p(T) 1/2.

(3.1)

For a sequence of severed tosses, our
primary rule is that each toss is an
independent event, unaffected by pre-
ceding results, and always with the
same probabilities, no matter how long
we play.

Yet, in a sequence of throws, we
know that it is most likely that heads
and tails will appear about equally
often, and that it is quite unlikely
that only heads will come up. The rea-
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son for this is not that the coin or
luck eventually makes a correction, but
is simply a result of the independence
of probabilities of each toss. For in-
stance, let us suppose that there has
been a sequence of tosses, perhaps 100
heads in a row, and that the probabil-
ity of this occurrence is some (small!)
number p(100H). Now, when the next toss
is made, the probability of one more
head is 1/2, just as for a single toss.
This means that, if we have been so
lucky (or unlucky) as to get 100 heads
in a row, we have only one chance in
two of extending our string one more
toss, to 101 in a row. We can then
write that the probability for 101
heads is

p(101H) p(H) p(100H) ip(100H).

Now, if the toss is a head, we know
what the chance is of extending the
string to 102:

p(102H) p(H) p(101H) tp(100H)

Thus, we see that the chance of extend-
ing the string of successes decreases
with each additional success, by the
same factor each time. The improbabil-
ity of a long string is just the result
of the repeated product. Therefore, the
probability of 100 heads in a row is
the repeated product of 100 factors of

or

p(100H) - ()i".

Of course, the probability of 100 tails
in a row is the same. Moreover, since
the probability of a tail on any single
toss is precisely the same as the prob-
ability of a head, we get the same
chance for a string of 99 heads in a
row, and then one tail, as for 100
heads. Or of 23 heads, a tail, and 76
heads. Or of 23,heads, and then 77
tails. Or even of an alternating set of
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heads and tails, adding up to 50 heads
and 50 tails! This seems wrong, until
we realize that we are specifying pre-
cise results for individual tosses, in-
stead of simply letting the vagaries of
chance work things out in the long run.
When we relax our conditions, and let
heads or tails come up on any individ-
ual toss, we find that the string is
likely to have about 50 heads and 50
tails. But we have to include runs in
which we may get clusters of several
heads or tails in a row, as well as al-
ternating sides, and also strings in
which there are first 50 heads and the
rest tails. We begin to see that the
dominance of the average behavior is
that there are many ways of reaching
it, as long as we do not specify the
detailed route.

For N tosses, each distinct se-
quence has probability (1/2)14. The gen-

eraticn of each sequence can be seen as
a branching diagram, as the Fig. 3.1

below: At each junction, the chance of
following one of the two branches is
1/2, so that the chance of taking one
particular route containing N junctions
is (1/2)". How many different routes
are there for a diagram of N junctions?

Since each junction has two branches,
there are gamely 22 different routes.
Since the probability of each route is
(1/2)2, the sum of probabilities of all

routes is therefore 22(1/2)2 1, as it

should be: If N junctions have been
passed, it is certain that we have

---HEADS
--- TAILS

IOW AND IMMO

taken one of the possible routes to the

end.
Usually, we are not interested in

the order in which heads or tails ap-
peared, but simply in how many there
were in the whole sequence. If we put

the different sequences into such
classes, a distribution begins to
emerge, with some classes much more
popular than others: examples of such
distributions are shown in Fig. 3.2. If
the number of tosses is very small, we
can sort the sequences into classes by

preparing tables, but tables are im-
practical for longer runs - the number
of entries for N - 20 would be 20(2)20

21,171,520. Clearly, some shortcuts
are necessary. Fortunately, they are

not hard to develop. Suppose we wish to
determine how many different sequences
of N tosses contain n heads and m tails
in any order. To begin, we think of
each H as labeled with a distinguishing
mark. Let them be numbered H H2,2, '"
Ho; they may each appear on any one of
the N tosses not already "filled" by
another H. After all the H results are
distributed in a sequence, the remain-

ing (N n) tosses are occupied by the

m T's that remain: m and (N n) are

the same.
Beginning with the first, we can

imagine H1 in any of N places. Since
one space is filled, there are only

(N - 1) openings for H2, and progres-
sively fewer for each additional one,
down to (N -n +l) for H. All together,

Fig. 3.1 Alternatftve sequences of the re- Fig. 3.2 Finding maxima and minima of func-

tions by differentiation.suits of tosses of a coin.
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the total number of combinations is the
continued product

N(N 1)(N 2) (N n + 1).

A convenient symbol for a contin-
ued product is the factorial, defined
for an integer ' by

z! z(z 1)(z -2) ... (3)(2)(1),

with 0! - 1. The number of different
arrangements of n distinguishable H in
N tosses can then be written as

N!/(N n)!. But in an actual sequence
the different H are not distinguish-
able, and there is no difference be-

tween a run such as

HI T T Ha T Ha

and another of the form

Ha T T HI T H

I

The factor by which we have overcounted

is the number of different orderings we

can make of n distinguishable things:

it is simply n!. Therefore, the number

of different sequences of n identical H

in N tosses is N!/(N n)!n!. This num-

ber is the stlitil 222.1121 w(nH, mT)

of the category of n heads and m tails

in N n + m tosses: It is an important

result, and we rewrite it in more sym-

metric form:

w(nH,mT) -
n!m!

N!
(3.2)

Since the probability of every differ-

ent sequence is [p(H)]14, the probabil-

ity of getting any member of the class.

(n11, mT) is

p(nH, mT) - w(nH, mT)[p(H)114. (3.3)

The idea of a statistical weight is

useful in physics, when it is practi-
cally impossible to distinguish indi-

vidual arrangements of microscopic
quantities, and only those properties
characteristic of classes of arrange-

ment might be determined.

The graphs in Fig. 2.1 were drawn .

according to Eqs. (3.2) and (3.3). Ad-
ditional properties of the symmetric
binomial distribution are described in

the next section.
Among the most interesting fea-

tures to explore are the expected num-
ber of heads and the dispersion. We ex-

pect that the distribution should have
a shape that is a progressive develop-

ment from the discrete graphs of Fig.
2.1, with steps becoming less distinct
and the whole curve narrowing as N in-

creases. Instead of graphing a succes-
sion of curves, we can discover these
features by analysis.

For numbers larger than 10 the
factorial is tedious to calculate;
(however, there are published tables of
z! for 0 > z >1000). In statistical
physics it is almost always suffi-
ciently accurate to use an approximate
expression for z! when z > 10. Stir-

ling's approximation is

z! (27rz)4()", (3.4)

where e is the base of the natural log-

arithms. The formula is accurate to
within (9/z) percent. Using Stirling's

approximation for the factorials in Eq.

(3.2), we obtain a more convenient form
for the statistical weight of the class

of n heads and m tails:

N NN
w(nH, mT) (

2ffnm ern'
(3.5)

It is convenient to write the ex-
pression for statistical weight in
terms of a single parameter for the
fraction of heads in the total number
of trials. Defining the ratio r n/N,

then (1 m/N, and substituting in
Eq. (3.5), the statistical weight can
be expressed as a function of r and N

only

1
w(r,N)..[21rNr(1 r)]

ra(1

(3.6)

To locate the value of r corre-
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sponding to the greatest statistical
weight, we search for the region where
a small change in r does not affect the
result. It is the same principle that
one could use to locate the peak of a
physical mountain, by finding a spot

where a little motion forward or back-
ward would not cause any change in
one's altitude. Of course, the tech-
nique would give all the intermediate
peaks and valley floors as well, so it
must be used in conjunction with a few
rough observations in order to select
the highest value from among all the
flat spots. But it should give us lit-
tle trouble in the present application,
since we expect to find only one peak,
with steadily falling values on either
side.

When N is sufficiently large, the
variable r can be treated as continuous
rather than discrete. Instead of trying
to locate the peak by the method of fi-
nite differences, we can then use the
differential calculus, which is much
easier (as long as one knows differen-
tial calculus!). For any continuous and
differentiable function y f(x), the
extrema (maxima and minima) of y corre-
spond to places where the derivatives
of y with respect to x are zero: There
is an extremum at x x' if

dx)2=2,
- O.

In the Fig. 3.1, there are maxima at

x xl and x3, and minima at x 0, x2,

and x4. By differentiating f(x) add
setting it to zero, we should find all
of these values as roots of the equa-
tion. But we must inspect y itself to
determine that the root x xl is the

one that yields the largest value of y.

Applying the technique to Eq.
(3.6) we can find ra, the most proba-
ble value of r, which corresponds to
the most frequently appearing fraction
of heads. We could follow the prescrip-
tion by differentiating p(r,N), direct-
ly, as

gets) .a...(r.1) r X

dr dr
0,

for the case p(H) = p(T).

Instead of working with the probabil-
ity directly, it is much easier in the
case of large exponents to work with
the logarithm of the probability. In
this way we will be able to separate
the individual terms and to pick out
those that are most important. The
habit of working with logarithms of
functions rather than the functions
themselves is characteristic of statis-
tical physics; it will come up again.
Since In p is a monotonic function of
p, the extrema of In p occur at the
same positions as the extrema of p it-
self.

Remembering that In (ab) In a

+ In b, In (a/b) In a - In b, and
In (a)b b In a, taking the logarithm
of both sides of Eq. (3.6) gives us

In w(r,N) In r - In (1 -

- r N In r - (1 - r) N In (1 - r)

+ N In p(H).

Differentiating with respect to r, and
using d/dx (ln x) 1/x, we obtain

dr

r
-d- [ln p(r,N)] '

11

- r) r)

+ N ln
L

r (1 r)
r

If N is very large the second term is
dominant in the intermediate range of r.
In this region the only point where

N In F(1 r)i .
L r

is that for which (1 - r)/r = 1. Thus,
rR = The result is independent of N:
The most probable result is that heads
comes up half the time in any length of
sequence.

Sometimes the average value in a
distribution is not the same as the
most probable value. They will be dif-
ferent when the values are not distrib-
uted symmetrically about the peak of
*the curve (the distribution is skewed).
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For example, if in a group of 100 test
papers there are 10 ,erfect scores but
the rest are distributed in steps of 1

from 1 to 90, the most probable score
is 100, but the average is only 50.95.
The average value of x, which is usu-
ally written (x) or if, can be found

from the probability distribution by
remembering that the probability is
equal to the fraction of times that a
result appears. The average is formed
by totaling all of the values that ap-

pear and then dividing by the number of

entries. Thus, if there are N trials, a
probability p(x1) means that N p(x1)
results gave the value x1. These add

tontributi...n x1 N p(z1) to the tor

W. The average is then

(m) - ;!xiNp(xl) + maNp(x2) +

iinNp(xp)j

1 2: xiNgii) - 2: xipc.d.
1=1 i=1

(3.7)

If the probability varies little

from one value of x to the next, so

that p(x14.1) - p(x1) <K: p(x1), we may

treat z as a continuous variable. In

this case, the probability dp(x) that

the result lies between z and z + dx is

proportional to the interval dm:

dp(x) - f(x)ax, (3.8)

f(x) is known as the probability den-

sity. It is a normalized function,

since the probability is unity that z

has some value out of the total possi-

ble range:

fdP(x) a. 1 -
,

f(x)dx (3.9)

Averages of functions of variables

are often of interest. For example, if

results having large values are partic-

ularly important, we may want to devel-

op some property of the distribution

which emphasizes the large results more

than the smaller ones. If a high school

curriculum is designed'to stimulate the
few unusually talented students, their
grades may be improved to very high
levels, but they would make little dif-

ference to the class average. We could
emphasize the appearance of their high
scores by averaging not the scores
themselves but the squares of the

scores, or even higher powers. The pre-

scription for averaging theesquares of

quantities is formally the same as for

the quantities themseltres.

(x2)
- xi2p(xl)

1=1

for discrete values of x, and

(x2) Le: ^2 f (x)dx

for continuous values.

(3.10)

For any integrable function g(x), the

prescription is

(g(x)) f :g(x)f(x)dx. (3.11)

A very interesting feature of the aver-

aging process is that the average of a

function is not identical to the func-

tion of the average: they are noncom-
muting operations in general. A simple

example is z2, and the set of numbers

in Table 3-1 illustrates the inequality

(z2) * 002.

x

3 9

-2 4

-1 1

0 0

1 1

2 4

3 9

TOTALS: 0 28

AVERAGES: <x> =0 <0> =4

Table 3.1 An illustration of the noncom-

mutability of the operations of averaging

and o2 making an arbitrary function of a

variable. The example shows that <0140 Jerx
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n-0,1)=.2 n=9,8=1.5 nnoblp=9
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:111118 111111118 811111111
0 2 4 6 810 0 2 4 6 810 0 2 4 6 810

Fig. 3.3 Binomial distributions for various
values of N and p. After G. P. Wadsworth and
J. O. Bryan, Introduction to Probability and
Random Variables (McGraw -Hill Book Company,
Now York, 1960).

.4

pm1 p -2 18=3

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

p =, P=10

0 11111111118 .8111111111111a.
0 2 4 6 8 10 0 2 4 6 810 12 14 16 18 20

Fig. 3.4 Poisson distribution for various
values of M. After O. P. Wadsworth amid J. O.

Bryan (op. cit.).

1

The relative widibs of distribu-
tions can be expressed in terms of (z2)
and (z)2. The dispersion 0 is defined
by the relation

a2 - (x2) - (x)2. (3.12)

It can also be written in the form

C2 ((x (x)
(3.13;

For the binomial distribution, the dis-
persion can be calculated from the dis-
crete finite series. For a symmetric
coin, the result is that the dispersion
in the number of heads appearing in se-
quences of N tosses is

=

showing that the magnitude of the devi-
ation from an equal number of heads and
tails increases as the sequence gets
longer. But the deviations do not in-
crease as rapidly as the sequences
themselves. The relative deviation of n
decreases: if we express the result in
terns of the ratio r = n/N, the diaper-

.

sion in r is

Hence

(r2) (r) 2
1

as

1
Or r-

2v242

showing that the relative distribution
gets narrower as N increases. In the
limit of an infinite number of trials,
the curve has no width at all, giving
the precise result r = In the limit,
we return to the way we defined the
probability for each toss, by assuming
an infinite number of trials.

3.2 OTHER DISTRIBUTIONS

3.2.1 The Skew Binomial Distribution:
A "Plugged Nickel"

If the probabilities of the two
possible results A and B of a trial
are different, the binomial distribu-
tion is no longer symmetric. Suppose
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that the probabilities are p for the A
result and q for the B, with p + q - 1.
By a simple extension of the develop-
ment of the symmetric binomial distri-
bution, we find that the probability
for n results of type A in a sequence
of N trials is

p(n)
N:

- n):
epm-0. (3.14)

The distribution is skewed for all
cases in which p # q, as seen in sev-
eral cases graphed in Fig. 3.3.

3.2.2 The Multinosial Distribution

If there are sore than two nutu-
ally exclusive results possible from a
single trial, the probabilities of com-
binations are describable by a multi-
nomial distribution. Let the probabil-
ity for a type 1 result be p for a
type 2 result be p2, and so forth, the
total number o.f different results being
v. By an extension of the development
of the binomial distribution, the prob-
ability for nt results of type 1, n2 of
type 2, etc., to occur in a sequence of
N trials is

p(ni, n2, ... nv)

N:

n nv: Pi 'Fs r
al r1 pioavt

(3.15)

where

pi - 1.

3.2.3 The Poisson Distribution

This is a limiting form of the
binomial under certain conditions. The
conditions are that p --0 and N --min
such a manner that the product Np tends
to a constant limit A. The Poisson dis-
tribution for n successes is

p(n) (3.16)

Several examples of Poisson distribu-
tions are shown in Fig. 3.4; notice the
similarities between Fig. 3.4 and the

n BINOMIAL POISSON

0 .3575 .3679

1 .3682 .3679

2 .1841 .1839

3 .0612 .0613

4 .0153 .0153

5 .00303 .00307

6 .00050 .00051

7 .000071 .000073

Table 3.2 Comparison of binomial probabil-
ities for p 1/500 and N u- 500, with Aar
son probabilities for g Np 1.

skewed binomial distributions in Fig.
3.3. The correspondence between the
Poisson and binomial distribution in
the region of small p and large N is
also evident in Table 3.2, which com-
pares the two for the case of p 1/500
and N 500.

3.2.4 The Gaussian Distribution

The Gaussian distribution is also a
limiting form of the binomial: It is
appropriate for the case of large N,
such that the values of results can be

treated as a continuous variable x. In
terms of the product A Np and the
dispersion a Ail", the probability

2 0 2 x

Fig. 3.5 Gaussian distributions for A - 0
and various values of v. Aster G. P. Wads-
worth and J. G. Bryan (op. cit.).
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that the number of results lies between
x and x + dx is

dp(x) f(x) dx

1
exp [ (x2-a2A) 2 dz.

cr4ii

(3.17)

The Gaussian distribution is usually a
satisfactory approximation for the bi-
nomial for Np ). 5. It also approximates
the Poisson distribution when A is suf-
ficiently large. The Gaussian distribu-
tion is particularly useful because it
has convenient mathematical properties;
it is generally used in place of the
Poisson and binomial distributions whe
whenever it is reasonably accurate to
do so. In Fig. 3.5 several samples are
shown for fixed A and various a. The
dispersion controls the width, while A
controls the position of the curve:
Varying A would cause the sample curves
to slide to higher or lower x, but with
no change in shape. The formula for the
dispersion in the Gaussian distribution

I

is the same as that used in the discus-
sion of the binomial distribution, that
is, the value of (x2) (x) 2 for the

Gaussian distribution is 02.
The probability density for any

distribution is normalized, according
to Eq. (3.9). For the Gaussian distri-
bution we therefore have

f°3 exp [
(x

)21
dx al/MI.(3.18)

Averages of x and x2 for the Gaussian
distributions are given by the definite
integrals:

r so

02
(x)

1

J
exp17-(x

202
2 dx A,

L

(Z2) on 1 f
-6'3
" Xa [ dx(fail

2 4- A2 . (3.19)

These averages will be useful in Chap-
ter 4.



4 POSITIONS AND VELOCITIES
OF NOLECULiES OF A GAS

The statistics of pure chance can be
translated into the statistics of sev-
eral physical systems. One of the sim-
plest examples concerns the distribu-
tion of molecules in a gas. If we be-
gin with a question about the distri-
bution in space, the statistics of a
symmetric coin can be applied immedi-
ately to its solution. Increasingly
sophisticated questions about the
same molecules can be answered by us-
ing distribution functions derived
from the binomial law. The exploration
will lead us into the elementary kine-
tic theory of gases.

4.1 THE DISTRIBUTION IN SPACE

Suppose that we have a quantity of
gas sealed in a container. How uni-
formly do the atoms arrange themselves
throughout the volume? To make the
problem as simple as possible at first,
we will consider the container divided
into two equal volumes.A and B. We
imagine the atoms to be in random mo-
tion throughout the total volume, each
particle moving back and forth in an
irregular path of straight lines by a
succession of reflections with the con-
tainer walls. The roughness of the
walls causes the path to vary endlessly,
so that an atom threads its way through
the container in every direction, even-
tually coming arbitrarily close to any
point, from all angles. No portion of
the volume is avoided or preferred (ex-
cept perhaps for the regions close to
the walls), and therefore, the chance
of finding the atom within a specified
portion of the container is propor-
tional to that fraction of the total
volume, independent of the location or
shape of the portion. Therefore, if the
volume of the container is divided into
two equal portions of any shape, the_
chance that a specified atom is in
either portion is 1/2. This makes the

21

probabilities of the atomic locations
in the two regions equivalent to the
results of the tosses of a symmetric
coin. To pursue the analogy, we must
guarantee the independence of proba-
bilities of location of the individual
atoms, corresponding to the independ-
ence of results of individual tosses.
To effect this correspondence, we as-
sume that the density of atoms is suf-
ficiently low, so that collisions be-
tween them are infrequent: Each atom
is rarely disturbed by an encounter
with another. Although in this devel-
opment we, imagine atoms as if they only
interacted by bumping, real atoms or
molecules sometimes have long-range in-
teractions. When two real molecules are
within their range of interaction,
their positions and velocities are not
completely independent: They are found
to be correlated. In the present exam-
ple we consider the average separation
to be much greater than the range of
interaction, so that their positions
and velocities are uncorrelated. There-
fore, if two atoms are in the whole
container, the probability that both
are simultaneously in the A half is
1/4. The chance of finding one (either
one), in A and the other in B is 1/2.
When N atoms are enclosed, the chance
that n are in A is evidently the same
as the chance that n out of N tosses
of a symmetric coin will be heads, and
it is given by the binomial distribu-
tion.

In Chapter 3 some properties of
the binomial distributions are ana-
lyzed, and the results are useful here.
They show that the average atomic ar-
rangement will be symmetric for any nu
number of molecules: 1/2 in A and 1/2
in B. At any moment, the _arrangement

may be different from the average, the
chance of a certain deviation being
equal to that of the same numerical de-
viation being equal to that of the same
numerical deviation in a sequence of
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tosses. But the gas is not frozen in
its distribution, since the individual
atoms continue to travel through the
container, and the distribution changes
continually. The time for an appreci-
able change to occur is difficult to
calculate with any precision, but we
can readily estimate its order of mag-
nitude.

If the container walls are micro-
scopically rough, as almost all real
walls are, atomic reflections are dif-
fuse, or random in direction. By such
reflections, the spatial distribution
of all the atoms is made nearly inie-
pendent of the previous arrangement as
soon as each atom has time to make one
collision with a wall. Therefore, the
"lifetime" of a particular arrangement
in a volume is L/(v), where L is a
characteristic length of the container,
and (v) is the average speed of an
atom. If instead of concerning our-
selves with the arrangement relative to
the two halves of V, we ask about the
distribution in a smaller part of the
volume, the lifetime will be smaller,
corresponding to the dimensions of that
small part. The lifetimes for the ar-
rangements of common molecules at ordi-
nary temperatures in laboratory-sized
volumes are very short. Borrowing a re-
sult from a later section of the chap-
ter, (v) for low-mass molecules is on
the order of 1000 misec at room temper-
ature. Therefore, the time for a rear-
rangement to occur in a 1-m cube is
about a millisecond. For this volume,
the system passes through a succession
of many arrangements rapidly. However,
the corresponding lifetime of a spatial
distribution in a galaxy of 100,000
light-years in diameter is about 3

x 1010years. Hence, for small volumes,

a series of observations lasting a sec-

ond may be sufficient in averaging the
system over many arrangements, but for
most astronomical volumes we can only
examine a single arrangement even if we
observe over the course of many years.

If either the astronomical or the
laboratory-sized samples of gas are in

an abnormal arrangement at a given mo-
ment, perhaps because of some external

influence which has been suddenly re-
moved, they will each lose all memory
of that situation in a few character-
istic rearrangement times, after which
the positions will be in statistical
equilibrium, moving from one arrange-
ment to another according to their rel-

ative statistical weights. The time for
this system of independent particles to

relax from an unusual situation caused
by a change in its external environment
is therefore about the same as the time

for new arrangements to occur under

steady conditions. The equilibrium time

is not always identical to the time for

major reorganization for all types of

systems - the relaxation time and the
redistribution time are comparable in
this example because the walls are as-
sumed to be perfectly rough, the mole-
cules rarely collide, and also because
we are now considering only their ar-
rangements in space.

'Although every imaginable arrange-
ment is possible, some are much more
likely than others, having greater sta-
tistical weights. From the results of
Chapter 3, we see that the atoms dis-
tribute themselves more perfectly be-
tween the two halves as their numbers
increase. Specifically, the percentage
mean deviation from an equal division

varies as 1/1N. For 1 cubic meter of

gas at the density of interstellar

space, which is about 1 atom/cm3, the

mean deviation is about 0.1 percent.
But for 1 cubic meter of air at sea-
level pressure, in which there are

about 1022 molecules, the mean de-

viation is about 109 percent.
We need not limit ourselves to the

case of equal subdivisions of the con-

tainer. The skewed binomial distribu-

tion for an asymmetric coin is appro-
priate to the arrangements of molecules

between two unequal parts of the vol-

ume. It is described in Chapter 3, and

predicts that the average division of

atoms is proportional to the ratio of

volumes, according to the a priori
probabilities for individual particles.
As in the example of two equal por-
tions, 'Ne perfection of the ratio of

the poi -Alone in two unequal portions
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is also improved as the total nuallv::i. of

particles increases. But if one of the
portions becomes so small that the
average number of particles it contains
is much smaller than the total, then
its population will fluctuate by a
larger percentage. If, for instance,

the sample is so small that the aver-
age number it contains is only one
atom, it will be subject to fluctua-
tions comparable to the average itself.
The larger volume, on the other hand,
will not fluctuate at $411, since it
contains essentially all of the parti-
cles, a constant number. Under these
conditions, the numbers of particles
appearing in the small volume will fol-
low a Poisson distribution. The mathe-
matical form of the Poisson distribu-
tion is described in Chapter 3 for the
example of a very asymmetric coin, in
the limit of a very small probability
of heads and very long sequences. For
our physical example, the probability
of an atom's appearance in the small
sample volume is equivalent to the
small chance of heads, and the large
total number of atoms is equivalent to
the large total number of tosses. In
terms of the average number (n) of par-
ticles per unit volume of the whole co
container, the probability for finding
exactly n particles per unit volume of
the small sample is, after Eq. (3.16),

(n)n e-(n)
p(n) (4.1)

n:

Some examples of the Poisson distribu-
tion are graphed in Fig. 3.4. The first
example, with A - 1, corresponds to the
physical example (n) - 1 discussed
above. It shows that there is just as
much chance for finding 0 particles as
for 1 (e-1 for each), half as much for
2, etc. There is thus a very wide scat-
ter in the percentage deviation. For
larger (n) or A the absolute width of
the distribution increases, but the
width relative to the total decreases:
In the last example A 10, and here
the mean deviation is reduced to about
25 percent of the average value. In
this case, the distribution is nearly
symmetric, and begins to resemble a

I

Gaussian distribution. The approxima-'
tion becomes quite accurate by the time
A b..s increased to 50; in Table 4.1 the
binomial, Poisson, and Gaussian distri-
butions are compared for this situation.
Because its mathematical properties are
more convenient for calculations, we
prefer to use the Gaussian form when it
is appropriate. The Gaussian distribu-
tion is a good approximation when n is
large enough to be treated as a contin-
uous variable. Translated into terms
convenient for the physical case, the
Eq. (3.17) for the Gaussian distribu-
tion can be translated to the probabil-
ity f(n)dn that the number of particles
per unit volume lies between n and
n + dn,

m
,exp (n -(n))2]dn.
air 202

f(n)dn
1

(4.2)

We have been considering the dis-
tribution of molecules as a fluctuating
population in a sample small "cell" of
the whole container, a distribution in
time. We can also consider the distri-
bution from the standpoint of varia-
tions in space. In the equilibrium
state every small region of the con-
tainer is as probable a location for an
atom as any other cell of the same
size. Therefore, there is nothing to
distinguish the fluctuations in one

n BINOMIAL POISSON GAUSSIAN

25 .0000 .0001 .0000

30 .0006 .0010 .0007

35 .0052 .0057 .0054

40 .0212 .0205 , .0215

45' .0460 .0442 .0458

50 .0569 .0570 .0563

55 .0424 .0442 .0422

60 .0199 .0205 .0201

65 .0061 .0057 .0063

70 .0013 .0010 .0014

75 .0002 .0001 .0002

Table 4.1 Comparison of Gaussian and Pois-
son approximations to the binomial probabil-
ity, when N 2500 and p 0.02.
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cell from those in another, and any
cell displays arrangements similar to
those expected for any other cell, ex-
cept that they will occur at different
times. Therefore, a description of the
instantaneous atomic populations of
many cells is equivalent to the de-
scription of successive stages of a
single cell. Interpreted in this lash-

a

PY

b

Fig. 4.1 Paths in phase space of some dy-
namical systems; (a) a free particle; (b) a
falling object; (c) a one-dimensional bar-

onic oscillator.

ion, Eqs. (4.1) and (4.2) are descrip-
tions of the distribution in space.

4.2 MOLECULAR VELOCITIES

By using a combination of physical
arguments and the methods of statisti-
cal analysis, one can obtain the form
of the distribution law for atomic ve-
locities. To make the analysis as sim-
ple as possible, we assume that the
atoms have no properties other than
their (identical) mass, so that a com-
plete description of the state of a sin-

gle atom can be given by specifying its

3 position coordinates; x, y, z in Car-

tesian space, and its 3 vclocity or mo-
mentum coordinates; vs, vy, vs-or px

mvx, py = mvy, Ps = mvz. Although it
simplifies the analysis to consider the
atoms as if they possessed no internal
variables, the resulting distribution
of velocities will not depend on this
restriction, and it will be possible at
a later stage to expand the treatment

to include other atomic properties in

the statistical description.
In addition to the assumption of

point masses, we assume that the gas is

isotropic, so that the motions look the

same when viewed from any direction.

The gas can be isotropic in only a sta-
tistical sense, of course, since any
particular trajectory has a definite
direction in spa,:e. But z. series of

observations of many trajectories is
assumed to show no tendency to prefer

or avoid'certain directions, or to have

speeds which are in any way correlated

with direction. Since all directions
are equivalent, we are able to analyze

the three-dimensional motion by study-

ing at first only the component motions

parallel to a single direction and la-
ter to combine the independent distribu-

tions along each direction to make a

complete three-dimensional description.

4.3 PHASE SPACE

The dynamical behavior of a point-

mass molecule can be described by giv-
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ing the history of its 3 position and
3 momentum coordinates. As the 6 vari-
ables change with time, the particle
can be imagined to move along a path in

a six-dimensional hyperspace, called

phase space. Certain properties of the
paths in phase space, those which are
important to the theory of their sta-

. tistical behavior, can be obtained from
their geometry alone, ignoring their
behavior as a function of time. In or-
der to become familiar with the concept
of phase space, we will consider some
examples of motion in one dimension,
so that their paths can be drawn as

two-dimensional graphs.
A particle moves along the x di-

rection at constant speed. Therefore px
is constant; x varies. Its graph is

shown in Fig. 4.1a. An object falls
from rest, with acceleration g. Its mo-
mentum py n mgt, and its displacement

y igt2. Therefore, its phase space
trajectory is the parabola y = py2/2m2g;

shown in Fig. 4.1b. A mass is attached

to a spring, and executes simple har-

monic oscillations according to the

equation

x xo sin wt; px mwoco cos cot.

We can obtain the equation for the cor-

responding path in phase space by
squaring each equation above and using

the trigonometric equality.

sin2 0 + cos2 0 1.

Carrying out these operations, we ob-

tain

(nwx)2 px2 omax402.

This graph of this equation is an el-

lipse, shown in Fig. 4.1c.
The importance of the concept of

phase space arises from the very power-

ful technique of analysis of dynamical

systems by means of Hamilton's equa-

tions. In the Hamiltonian method, coor-

dinates and momenta are in a symmetri-

cal relation with respect to one an-

other; x and plc, y and py, etc. These

25

Px

+Pxo

x

xo

Pxo

Fig. 4.2 One dimensional motion of a "free"

particle confined in a box having perfectly

reflecting walls.

pairs of variables are said to be can-
onically conjugate to each other, and
they play symmetric roles in Hamilton's

equations of motion.
We are preparing to use the con-

cept of phase space to analyze finite
volumes of gases. Therefore, we will
modify Fig. 4.1a by confining the par-
ticle to a one-dimensional box, so that

it only travels between limits, being

reflected at the walls. Now, the path
is seen in Fig. 4.2: It has become a
pair of horizontal lines, one at +px as
it moves to the right, and one at Px
as it moves to the left at the same

speed. The two horizontal lines are
connected by vertical lines at the
walls, where the reflections are as-
sumed to take place at precise posi-
tions. For real particles and real
walls which are slightly compressible,

a reflection takes place over a small

but nonzero distance, and therefore,
the actual trajectory would have
slightly rounded corners. In any event,

the path is closed.
In the one-dimensional example,

the motion of a particle in a box sim-
ply repeats in each transit the motion
of the previous cycle, but in two- and

three-dimensional motion the path is

not repeated each time. This is because

the total energy is shared among the
three components in the different di-
rections, and the component magnitudes
will generally vary from one transit to

the next. In three dimensions, the par-
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ticle moving at constant speed has the
total constant energy

1

"c (n 2 4. 3r2 z2 )
2m

(4.3)

As the collisions with the rough walls
cause the particle to be reflected at
in various directions, the magnitudes
of the component momenta px, pr, px
vary. If all directions are equally
probable, there are no restrictions on
the individual magnitudes as long as
the condition of constant energy is
maintained. This corresponds to the
range for each component,

-1r2m pi ts pi - px, pr, Pa'

Let us now imagine many identical
particles moving in the volume. If the
atoms rarely collide with each other,
each one will move very nearly as the
solitary atom, tracing out an irregu-
lar path in the six-dimensional phase
space. In the case of many atoms, how-
ever, each particle has a very much
larger range of momenta than if there
were no collisions. In a typical colli-
sion between two particles one will be
caused to speed up and the other to
slow down. The result of a particular
collision depends on details of the
actual cross sections and directions of
approach, but we do not need to con-
sider these details in our statistical
analysis.

The momentum available to a single

Px

I .

41........ V.:: ._.
X 0

.

20

Is

0.1
...111L. al0 .

Fig. 4.3 Graph of the instantaneous posi-
tions and momenta of a weakly interacting
gas in statistical equilibrium.

1

atom now extends up to such a value
that the total energy U of the gas is
contained in a single particle. The
limits of momentum in each dimension
are thus

-1127n1.1 < p <.NriinU

If there are N identical particles,
each one is subject to the same re-
striction, and each roams over the
phase space of larger extent. But they
do not do so independently, since all
of their energies must add up to U at
all times. Therefore, the particles can
be represented as N movirw,

through the six-dimensior:.1 space,

but restricted by cr.r.ervation of

the total energy to a surface of five
dimensions. Projected upon a plane sur-
face in px and x, their momentary posi-
tions in phase space might resemble the
graph in Fig. 4.3. If this drawing were
an illustration of an arrangement in
coordinate space, it would indicate the
variations in density of the molecules,
i.e., their distribution in space. But
in Fig. 4.3, we see a distribution in
phase space, which contains aspects of
a distribution in coordinate space com-
bined with a distribution in momentum
space.

4.4 DISTRIBUTION IN PHASE SPACE

In order to analyze the distribu-
tion in phase space by statistical
methods, we will assume that the space
is divided into many small cells of
equal "volume" Apx -Ax. We make the
crucial assumption that each cell has
an equal probability of occupation -
this assumed uniformity of phase space
is analogous to the uniformity of coor-
dinate space in the previous section.
The condition of uniform probability in
phase space, which is the fundamental
hypothesis of statistical mechanics,
and which is applicable to all identi-
cal systems in statistical equilibrium,
is discussed in considerable detail in
advanced works on statistical mechan-
ics. It rests upon a combination of
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physical and mathematical arguments
that are beyond the level of this mono-

graph. We shall therefore simply adopt

it without any further juFtification.
We also assume that the probabil-

ities are unchanged by the numbers of

atoms already in the cell. This assump-

tion of the irdependence of probability

on cell popniation is not correct, but

is only approximation which works

when the density in phase space is

small (in comparison to the reciprocal

of Planck's constant h). The approxi-

mation is equivalent to the assumption

of classical statistical behavior,

which is generally valid for gases and

other systems at not-too-low tempera-,

tures. Under these assumed conditions,

if the probability of occupation by a
single molecule in any cell is g, the

probability of occupation by N mole-

cules is g1.
For convenience in describing the

arrangements of molecules among the
cells, we designate the cells by num-
bering them in sequence, and list their

populations thus: n1 particles in cell

1, n2 in cell 2, nv in v. If the

molecules are indistinguishable, the
probability for a distinct arrangement
is given by a multinomial distribution,

as in Chapter 3:

p(n1, n2,... nv) w(n1, n2,

where

N:
nnp)w(n1, n2,

1' n
2

! nv
(4.4)

is the statistical weight of the ar-

rangement. If N and v are large numbers

the statistical weights of some ar-

rangements are enormously greater than

most of the rest. The arrangements of

great statistical weight will therefore

be those that the gas spends most of

its time in. Therefore the gas can be

approximately described as being only

in its most probable state, ignoring

the rest. Fluctuations of the distribu-

tion away from the most probable one

will occur, analogous to the fluctua-

tions in the ordinary density treated
earlier, but we will not consider them

here.
Considering only the most probable

distribution, we seek to maximize the
statistical weight, Eq. (4.4). The dis-
tribution is subject to two equations
of constraint, however. The first is
that the total number of particles is

a constant:

ry
Lni -N, (4.5)

and the second is that the total en.-

ergy is constant; if the energy corre-

sponding to the ith cell is el,

Eeini U, where ci pi2/2m.

= 1
(4.6)

To maximize w, we first express it in

more convenient form by taking its log-

arithm,

In w In N! ln(n1!n2! ny!)

In In (4.7)
1=1

We use Stirling's approximation for the

factorial, Eq. (3.4) (we are assuming
that each cell in phase space is large

enough so that it contains enough mol-

. ecules for Stirling's approximation to

be accurate). Using the formula for

In n!.

ln n! (n + ln n n + ln 2v,

(4.8)

substituting in the Eq. (4.7) above,

--
In w (N + i) In N +

(1

2

v)
In 2s

- 2: (n + in ni

a constant (ni + i) In np
1 a 1

(4.9)
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For the most probable arrangement, the
variation of ln w with respect to
small variations of all the populations

is zero:

1
d(111 w) 0 2: (ln ni + 1 + dni

L =1
2nt

2: ln ni dill, (4.10)

L=1

if we neglect terms that are small com-
pared to ln n1; In ni >> 1.

The small variations in the cell
populations are constrained to be con-
sistent with the constant N and U of

the entire collection of particles, by

the method of undetermined Lagrance
multipliers. This is a method which can

be used when a function of several var-

iables has either a maximum or a mini-

mum, and where there are additional
equations.of condition linking the var-

iables. Each independent equation among
the variables reduces by 1 the number

of independent degrees of "freedom" of

the function. The method of Lagrange
multipliers is a simple technique for
bringing the equations of constraint
into a single functional equation. Its
application will be seen in our case:
By differentiating Eq. (4.5) and Eq.
(4.6) with respect to the populations

in each cell,

Edn - 0, and E Eidni 0,

1=1 i. =1

we obtain two equations linking the

variations among the ni. They can be
incorporated into Eq. (4.10) by multi-
plying each by an undetermined parame-
ter and adding all three together;

./ 2: dni. 0
=1

+ p e 0

i =1

... 2: ln ni 0;

L

1:(1n ni + al+ piddni - 0.
i

a

Since this equation does not depend on
the choice of cell size or the numbers
of particles in each cell, the term in
parentheses must vanish for each cell
independently:

(ln ni + a+ Pei) O.

Taking antilogs

ni v a exp -Pet,
-cr '

where a e

(4.11)

Equation (4.11) is one of the most
famous equations in physics. It was ob-
tained by Boltzmann (1844-1906), in
1868. The term exp -0Ei is known as the
Boltzmann factor, and it has applica-
bility to a wide variety of systems in
statistical equilibrium, not only the
point-mass atoms of a gas. For, if we
review the analysis leading up to this
point, we find that it depends on only
the following conditions and assump-

tions:
(a) There are many identical par-

ticles in statistical equilibrium.
(b) All volumes of phase space

are equally probable.
(c) The probability of occupation

of a cell is independent of the number
of particles in the cell. (Note that
the cell size is arbitrary in our dis-

cussion.)
(d) The populations in each cell

are large enough for Stirling's approx-
imation to be used.

These conditions are also satis-
fied by many other systems, including
the vibrations of atoms in a crystal,
the states of atomic moments in a mag-
netic solid, and the conduction elec-
trons in a semiconductor. In the pres-
ent monograph, however, we are re-
stricting our attention to the case of

a gas, which will now be examined in

detail.

4.5 THE MAXWELL-BOLTZMANN GAS

Equation (4.11) seems a little ar-

tificial for the gas of atoms, since it

describes the distribution in terms of

the populations of discrete cells in
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phase space. Theme cells are only an
artifact we introduced to make the var-
ious regions of the total phase volume
distinguishable by subscripts. However,
we now sec that the subscripts are un-
necessary, since the energy E is all
that the populations depend on, through
the Boltzmann factor itself. Although
the phase space coordinates of the cell
are not important, the cell volume is:
By condition (b) above, the population
of a cell is direct'.; proportional to
its volume. Therefore, the number of
atoms in a certain region of r lase

spacc is proportional to the volume of

the region and to its Boltzmann factor.
If we define the population of a cell
of energy E and volume Apxtipielpx
docAortiz to Dean, Eq. (4.11) is trans-

formed to

Au(E, tipxip ... AZ)

a e P e apitapyApz Ax Ay Az. (4.12)
a

For infinitesimally small volumes, we

have the differential form

dn(c,dpxdpydpzdV) a e-PtdpicdpydpadV,.

(4.13)

where dV = dxdydz is an infinitesimal
volume in coordinate space.

Now, we can apply Eq. (4.13) di-
rectly to the case of the point-mass.
gas. Since the atoms are assumed to

move in a field-free region, the en-

ergy is not a function of the position

of the particle. Therefore, the popula-
tions are also independent of their lo-
cations in the container, and we can
combine them by integrating over the
entire volume V:

dn(c,dpzdpydps) a Ve-PEdpxdpydps.

(4.14)

Since the particles are assumed to col-
lide infrequently, each atom moves es-
sentially as an independent particle.
Therefore, the energy is related to the
momentum by the free particle expres-

sloe, Eq. (4.3). Substituting for C,
Eq. (4.14) becomes

dn(s,dPOPydPz)

aN exP[-P(217r 2m )11PxdP7dPz

cIN [ exp k--
013x2

dpz] [ exp ('' )dpr

pz2 py2 pz2

2

X[eXp(-13132z ) dpzi. (4.15)
m

This result contains the familiar
form of the Gaussian distribution: We

see that it is the product of three
Gaussian distributions, one in each
momentum variable. By comparing the
momentum distributions with the general
expression, Eq. (3.17), we can obtain
the average momentum (p0. and the aver-

age squared momentum (p72) by inspec-

tion. Comparison of the exponents shows
that the term which would correspond to
A in the Eq. (3.17) is absent in each
factor of the momentum distribution.
Since A is equal to the average of the
variable itself, this means that the
average of each momentum component van-
ishes:

(PO (Py) (PZ) 0. (4.16)

It is a reassuring result, since the

gas was originally presumed to be in

equilibrium with its stationary con-
tainer. Comparison of the remaining

terms of the exponents yields

pz2 ppy2 py2 ppz2
Pz2

2m 20x2' 2m 2a,2' 2m 27z2.

Therefore, aza aya aza aa = M/P.

(4.17)

Thus, the dispersion in the momentum

is the same in each direction. Since

the average momentum in each direction

is zero, we have a simple relation be-

tween the dispersion and the average of

the squared components. By Eq. (3.12)

we see that in this case

02 g° (P3i1) (Pyll) (P:) - le/P-

(4.16)
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Therefore, the averages are simply re-
lated to the Lagrange multiplier 0 and
the atomic mass. The parameter 0, which
has been undetermined so far, can now
be related to physical properties by
comparison with experiment. For we
found in Chapter 1 that Charles' law
implies a simple proportionality be-
tween the kinetic energy and the tem-
perature T on the absolute scale. That
connection leads us to the discovery of
$: by Eq. (1.12) and Eq. (4.18), we
have

2m 2m

2 Pg2 2
3

(E) + -1- + kT.
2* 20 2

And therefore, we obtain the gloriously
simple and profound relation,

0 - 1/kT. (4.19)

Before turning to a discussien of.the
significance of the result, we can ef-
fect a definition of the other Lagrange
multiplier by a similar comparison with
the general for of the Gaussian dis-
tribution. By this comparison it is
found that

N
a

V(21rmkT)312'
(4.23)

Therefore, the basic properties of the
statistical distribution of momentum
have been found, and we can write the
distribution law in terns of identified
quantities:

do
a,imkTriM exPE -2-21,kT drozdpydps

(4.21)

where we have written p for the total
momentum 4pz2 + py2 + pz2.

By a combination of reference to
experiments on gross volumes of gases,
a belief that gases are composed of
atoms, and a statistical analysis of
their random motions, we have arrived
at a formula for the velocities of heat
motion of the atoms in a gas.

Equation (4.21) was originally
derived in 1856 by Clerk Maxwell (1831-

1879), whose analysis followed very
different lines. Our derivation is pat-
terned after Boltzmann's. In either the
form above or in one of several related
forms, it is called the Maxwell-Boltz-
mann distribution law. It was confirmed
experimentally by several researchers
in this century: One of the first 118
Otto Stern, in 1920. Since then, the
Maxwell-Boltzmann distribution has been
tested for other "gases," including
plasmas and neutrons ih a reactor. Some
experimental comparisons are shown in

Fig. 4.4.
According to the Maxwell-Boltzmann

distribution law, the momentum distri-
bution has a width that is controlled
by the temperature. If more heat energy
is given to the atoms, they will, by
means of their collisions, share it
among themselves according to statis-
tical laws within a certain relaxation
time. The added heat raises the average
energy of all the atoms, and although
the average momentum in each direction
is zero, the average squared momentum
increases. This increases the disper-
sion of the distribution, so that the
variations in the momenta of atoms
picked at random are greater at higher
temperatures. We can liken these
changes with temperature to the varia-
tions that would be seen in an error
curve, if the measuring instrument had
a variable sensitivity. The coarseness
o: the "measurement" is an effect of
the many collisions which make up the
statistical equilibrium: As the average
energy increases, so does the disper-
sion. Cooling the gas improves the pre-
cision of the "measurement," but it
also reduces the quantity itself. As
the temperature is reduced, the curve
becomes sharper, and if the Maxwell-
Boltzmann distribution were to continue
to be obeyed at all temperatures, it
implies that one could measure precise-
ly (E) 0 at T O. However, long be-
fore then, real gases liquefy, and the
assumptions leading to the distribution
law become poor approximations of the
real situation. Other forms of heat
motion take place in liquids and sol-
ids, and they may be analysed by sta-
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tistical analyses based on the same
approximations we have used here. On
such a basis, the heat motions in liq-
uids and solids also vanish at T 0.

But it was realized early in the
twentieth century that several of the
assumptions of the classical theory are
not strictly correct. In the form in

a PROTONS
"U

mo

mo-

80

00

40

20

OL

il

I
I.
1-
1

.

/.
1

I:ri 1.

0°
7

-,1
..

........... .
23 2.34 2.38 2.42 2.46 2.5

100

SO

V x 10 (CENTIMETERS PER SECOND)

TRITONS

1.5 koV
----1 kOV

20

0
7 7.5 8 8.5 9

Vt x 10- (CENTIMETERS PER SECOND)

1.5 koV

----1 k.V

Fig. 4.4 Measured distributions of various
properties of some systems of weakly inter-
acting particles, compared with theoretical
curves derived from the Maxwell-Boltzmann
law.
(a) Velocity spectra of protons (a.1) and
tritons (a.2) from the d-d reaction in the
Scylla experiment on fast magnetic compres-
sion of a plasma, obtained by D. E. Nagle,
W. I. Quinn, W. B. Reisenfeld, and W. Le-
land, Phys. Rev. Letters 3, 316 (1959). The
curves are drawn according to theoretical
distributions corresponding to temperatures

T 11.6 X 10,E (1.0 keV) and 17.4 x 10,1E

(1.5 kell).

(b) Intensity distribution of neutrons emit-

which they are given following Eq.
(4.11), they are reasonable approxima-
tions for relatively high temperatures
and low densities, but for dense and
cold materials, the motion must be
analyzed in terms of quantum mechani-
cal laws. One important effect of
quantum mechanical behavior can be

b
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ted in thermal beam of a reactor, as a func-
tion of neutron wavelength A(A h/mv),

measured by J. G. Dash and H. S. Sommers,
Jr., Rev. Sci. Instr. 24, 91 (1953). The
curve is calculated for a beam effusing from
a Maxwellian source at 320 K, modified by a
spectrometer transmission function.
(c) Measured transmission curve and calcu-
lated Maxwell-Boltzmann transmission curve
for a beam of potassium atoms effusing from
an oveat 157 C. Abscissa is approximately
equal to transit time of atoms through ve-
locity selector. Measurements were made by
P. M. Marcus and J. H. Scree, Recent Re-
search in Molecular Beano, I. isternann
(ed.),(Acadoslo Press, Mew Tork, 1939) .
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stated in closing: The notions at T 0
are small, but not zero. As absolute
zero is approached, the atoms slow down
to some minimal momenta and energies..
When all the heat energy is removed, a

minimum and uneztractable amount re-
mains. This so-called zero-point notion
implies a residual dispersion in the
momentum, a direct consequence of the
laws of quantum mechanics.

I



EPILOGUE

In this monograph we have at-

tempted to show the march of scientific

progress in the field of kinetic theory

of gases. Experiment confirmed theory

brilliantly: perhaps the student might

have expected it. Textbooks and mono-

graphs tend to have this sort of happy

ending, a neatly packaged rationaliza-

tion or thesis. Economy of the teacher's

and student's time usually demands

that all of the mistakes and fruitless

paths in the history of the science must

must be ignored. This lends an unreal

and distorted complexion to one's im-

pressions of the subject and to scien-

tific achievement in general. The de-

velopment of our ideas about heat mo-
tions of atoms is a case in point. From

the first insights of the Greek atom-

ists to the experimental confirmation

of the detailed statistical theory took

more than 2000 years. During much of

this time men were attempting in one

way or another to rationalize the uni-

verse in general and the nature ot fire

in particular. Most of them were wrong,

or at least not part of the straight

line of progress sketched in our de-

scription. And yet, the distance we

33

traveled in two millennia is not so

enormous that there were no glimmerings

of modern ideas at the very beginning.

Here is what Lucretius wrote in the

first century B.C.:

These atoms, which are separated
from each other in the infinite void

and distinguished from each other in

shape, size, position and arrange-
ment, move in the void, overtake

each other and collide.

And also

Observe what happens when sunbeams

are admitted into a building and

shed light in shadowy places. You

will see a multitude of tiny parti-

cles mingling in a altitude of ways

in the empty space within the light

of the beam, as though continuing in

everlasting conflict, rushing into
battle rank upon rank with never a
moment's pause in a rapid sequence
of unions and disunions. From this

you may picture what it is for the

atoms to be perpetually tossed about

in the void.
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